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1. Introduction

In the modern world an ability of society to resist various kinds of
global risks is to a large extent determined by socio-economic factors.
Social consensus and its robustness to an impact of information noise
governs the effectiveness of authorities' regulating policies in different
countries. Examples of such phenomena can be found in differentfields:
from financial stability (the phenomenon of bank runs) to global health
issues (people's attitude towards vaccination). Despite clear distinc-
tions, such processes have much in common. In particular, the key fea-
tures of such systems are high connectivity and mutual influence of
individuals. In addition, evolution of these systems is typically affected
by various sources of endogenous and exogenous noise.

Social/economic interaction is believed to be one of the key factors
underlying the complexity of the observed features of large social/eco-
nomic systems and their evolution. Development of its quantitative de-
scription is thus known to be of high importance [1]. A particular strand
of literature studying the effects of interactions in multiplayer games is
devoted to the analysis of static equilibria and dynamical evolution in
noisy discrete choice games, see e.g. [2–4]. The presence of noise
makes it necessary to develop a probabilistic description of their equi-
libria as mixed strategy ones as well as of their dynamical evolution.
From the game-theoretic point of view the corresponding static equilib-
ria belong to the class of Quantal Response [5] or Boundedly Rational
Nash [6] ones.
),
A formulation of a noisy discrete choice game includes specifying the
strategy space (binary, ternary, etc.), noise distribution and topology of
the underlying graph representing agents interaction. The predominant
focus of the literature on noisy multiplayer discrete choice games is on
the simplest binary choice case with a particular choice of noise distri-
bution, the Gumbel one, and complete topology of an underlying
graph [2]. Static equilibria and dynamical evolution for arbitrary noise
distributions and complete graph topology was considered in [2,4],
the case of Gumbel noise and several fixed topologies was analysed in
[7]. The case of arbitrary noise distribution and random graph topology
was discussed in [8–10].

The choice of the Gumbel distribution allows to draw deep parallels
with statistical physics ofmagnetics. A useful description of itsmain rel-
evant aspects can be found in e.g. [11,12]. A discussion of such parallels
between noisy discrete choice games and statistical physics, most im-
portantly on ordered/disordered phases and corresponding phase tran-
sitions and mean field dynamics, can be found in [13–15], see also an
interesting discussion in [16]. In particular, both phase structure and dy-
namical evolution of the binary choice game on the complete graph
with Gumbel noise is equivalent to those in the mean field Ising
model [11,15]. Similar analogies played an important role in discussing
formation of public opinion in sociodynamics/sociophysics [17,18].

It is, however, clear that the above-described equivalence between
physicalmodels and those of socio-economic systems cannot be univer-
sal. One particular aspect potentially distinguishing spins in magnetics
from socio-economic agents is that the latter are, generally speaking,
forward - looking, i.e. their decision can be based not only on the current
system's state or its history, but can also be influenced by their forecast
of possible system evolution in future. This aspect of human decision-
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makingunderlies an analysis of repeated games in game theory [19] and
intertemporal effects in macroeconomics [20] where strategic behav-
iour is described through introducing an expectation of a sum of a
stream of discounted future utilities/payoffs as a factor correcting the
myopic decision making. Technically determining a locally optimal de-
cision requires solving a dynamical programming problem through
finding a solution of the corresponding Bellman equation, see e.g. [21].
The present paper builds upon the analysis of the myopic population
dynamics of the Ising game on complete graph for arbitrary noise distri-
butions presented in [4] by enhancing myopic decision making with
forward-looking strategic considerations.

To the authors' knowledge this study is the first attempt to introduce
strategic behaviour into the Ising or similar noisy discrete choice game.
However, there is a series of papers in which strategic agents behaviour
was considered in the context of evolutionary 2 × 2 bimatrix games. In
particular, in [22] effects of strategic behaviour on equilibrium selection
in a deterministic repeated 2 × 2 game was analysed. Several papers
were devoted to multi-agent games in which at some random time
points agents obtain possibility to change their strategies [23–25]. The
main question addressed in these studies was effects of strategic behav-
iour on equilibriumselection. Inmyopic games of suchkind agent decides
to change its strategy only as a result of the analysis of the current popu-
lation state. Forward-looking agents try to predict future evolution of the
population andmaximise their total utility on some horizon (finite or in-
finite). In particular, in [23] an existence of the evolutionary stable equi-
librium in the noisy game of this kind. The analysis shows that this
equilibrium converges to the myopic one when either the discount rate
goes to infinity (representing decrease of the agents foresight) or the fre-
quency of strategy revision declines. In [24] the variant of 2 × 2 coordina-
tion gamewith the samenoisy component for all playerswas analysed. In
this paper a dependence between agents' foresightedness and solution
phase with respect to noise is outlined. Namely, when the noise ampli-
tude is rather high, farsighted agents are act asmyopic ones in the system
with lower noise amplitude. In [25] the 2 × 2 coordination game where
some fraction of agents was farsighted while the others – myopic. Fore-
sight in thismodelmeans ability tomake a two-step forecast. The conver-
gence of the equilibrium to the Nash one was examined. It was shown
that presence of sufficient fraction of forward-looking agents enables
such kind of convergence. Results close to the previous onewere also ob-
tained in [26], however, heterogeneity of the agents foresight was
achieved through variation of agents' discount rates.

Themain goal of our paper is to describe a phenomenon of the effec-
tive interaction enhancement/noise reduction due to strategic consider-
ations of agents in the Ising game. This strategic stiffening/cooling
phenomenon has some qualitative similarities with the effect of strate-
gic interactions described in [24].

It is known, that one of the fundamental properties of the myopic
Ising game is existence of some kind of phase transition [2,4,7], i.e.
there is a critical noise amplitude separating the solution space
into two areas corresponding to disordered and ordered phases cor-
respondingly. The disordered one, corresponding to high noise
values, is characterised by zero mean equilibrium choice, while the
ordered one is described by appearance of agent's (partial) consen-
sus. The main result of the current study shows that when agents
are forward-looking the dynamics converges to the consensus in
larger domain than in the case of myopic game. I.e. solutions rear-
rangement appears at higher noise amplitudes. In other words, stra-
tegic considerations by forward-looking agents effectively reduce
noise. This effect represents some kind of self-fulfilling expectations.
When agent makes a decision he/she believes that consensus is pre-
ferred for the other players and this belief affects his current deci-
sion. This effect can have important consequences for the analysis
of large-scale social phenomena such as dramatic opinion formation
phenomena in sociodynamics [17].
2

The structure of the paper is the following.
In Section 2 we describe the Ising game considered in the paper. In

particular, in paragraph 2.1 we present an overview of the existing re-
sults on myopic Ising game on complete graph. The paragraph 2.2 de-
scribes the dynamic discrete-time Ising game of forward-looking
agents on complete network. In section 3 main results of the analysis
are presented. Concluding remarks and outlook are presented in section
4. The paper includes several appendices. In the Appendix Awe provide
a detailed description of the solution of the Bellman equation for the
value function. In the Appendix B we provide additional details on the
stochastic simulation of the Ising game under consideration. In particu-
lar, in Appendix B.1 we provide additional detail on the procedure of
stochastic simulations and in the Appendix B.2 - additional material
on the effect of strategic stiffening/cooling on generic description of sys-
tem dynamics in terms of ordered/disordered phases.

2. The Ising game

The dynamic Ising game studied in the present paper is formulated
as follows. There are N agents placed in the vertices of a complete
graph. A strategy space of each agent i, i = 1, …, N, consists of two
pure strategies si = ± 1. The game lasts for T time periods t = 1, … T
and at each time step t the full description of a system is given by a
strategies configuration s(t) = (s1(t),s2(t), … sN(t)). The evolution
starts with some initial configuration s(0) and is assumed to be driven
by strategy revisions si(t − 1) → si(t) by one randomly chosen agent i
per time step.

2.1. Myopic game

Let usfirst describe the standardmyopic version of the Ising game [2,
4,7–10]. The process of myopic strategy revision by an agent i is based
on assessing the value/utility Ui

mp(si,s−i(t),εs i(t)) of choosing a
strategy si

Ump
i si, s � i tð Þ, εsi tð Þ� � ¼ J

1
N
∑
j≠i

sj tð Þ
 !

si þ εsi tð Þ ð1Þ

where J > 0 is a coupling constant determining the strength of confor-
mity effect, s−i(t) = (s1,…,si−1,si+1,…sN) is a condensed notation for
a vector of strategies of neighbouring agents at time t and εs i(t) is a
strategy - dependent random contribution. It is assumed that
probability distributions for {εs i} are the same for all agents and are
Gaussian N 0,σ ≡ 1=βð Þ. In what follows we will use a condensed
notation

m � i ¼
1
N
∑
j≠i

sj

so that

Ump
i si, s � i tð Þ, εsi tð Þ� � ¼ Ump

i si,m � i tð Þ, εsi tð Þ� � ¼ Jm � i tð Þ þ εsi tð Þ:

Let us introduce an explicit notation Φi(t) for the information set
available for each agent at time t

Φi tð Þ ¼ Ii tð Þ, si t � 1ð Þ,m � i tð Þ, εi�1 tð Þ
� �

, ð2Þ

where Ii tð Þ is an indicator function equal to 1 if at time point t player i
gets a chance of strategy revision and to 0 otherwise. Using this notation
we will denote myopic utility function as follows

Ump
i si,Φi tð Þð Þ ≡ Ump

i si,m � i tð Þ, εsi tð Þ� �
, si ¼ �1, if Ii tð Þ ¼ 1

Ump
i si t � 1ð Þ,m � i tð Þ, εsi t � 1ð Þ tð Þ� �

, if Ii tð Þ ¼ 0

(
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The strategy of an agent i formed at time t is thus

si tð Þ ¼ argmaxs0i U
mp
i s0i,Φi tð Þ� �

Ii tð Þ ¼ 1

si t � 1ð Þ Ii tð Þ ¼ 0

(
ð3Þ

The process of evolution of s(t − 1) → s(t) at time t is thus driven by
strategy revision si(t − 1) → si(t) of an agent i for whom Ii tð Þ ¼ 1.

After the process of strategy revision is completed the agents collect
a vector of payoffs w(s(t))

w s tð Þð Þ ¼ Ump
i s1 tð Þ,Φ1 tð Þð Þ, . . . ,Ump

N sN tð Þ,ΦN tð Þð Þ� � ð4Þ

2.2. Strategic game

Myopic rationality expressed in (3) corresponds to the simplest pos-
sible type of behaviour indistinguishable from “rationality” of spin flips
in Glauber dynamics. Analysis of multiperiod problems in economics
and game theory is based on a notion of far-sighted (strategic) agents
who take into account not only the locally existing circumstances as in
(3), but also expectations related to possible subsequent evolution of
both s(t) and the associated payoffs w(s(t)). For a far-sighted agent
the choice utility is a sum of myopic Ui

mp and strategic Ui
st contributions

Ui si,Φi tð Þð Þ ¼ Ump
i si,Φi tð Þð Þ þ γUst

i si,Φi tð Þð Þ: ð5Þ

The expression for the strategic contribution is an expectation value of a
discounted sum of future utilities

Ust
i si,Φi tð Þð Þ ¼ E ∑

T

τ¼tþ1
γτ � t � 1Ump

i si τð Þð ,Φi τð ÞÞjsi tð Þ ¼ si,Φi tð Þ
 !

ð6Þ

where γ is a discounting factor and averaging is over a set of trajectories
{s(1)→ s(2)→…→ s(T)} generated by two sources of randomness: the
first is in the randomness in assigning the possibility of strategy revision
to an agent or one of the agents in his neighbourhood, the second is in
random strategy-dependent contributions to utility {ε sii }. It should be
stressed, that in fact there is one more argument in Ui

st(⋅) – the policy
function determining how agents will choose s(τ), τ > t. But we omit
this argument to simplify the notations.

The strategy revision process generalising themyopic one described
in (3) is now described

si tð Þ ¼ argmaxs0i Ui s0i,Φi tð Þ� �
Ii tð Þ ¼ 1

si t � 1ð Þ Ii tð Þ ¼ 0

(
ð7Þ

where the utility Ui(si′,Φi(t)) contains both myopic and strategic
contributions, see (5,6). The payoff for the resulting s(t) is, as before,
given by Eq. (4).

The process of decision making taking into account future system
trajectories is conveniently related to a value function Vi(si(t),Φi(t),t)

Vi si tð Þ;Φi tð Þ; tð Þ ¼ Ump
i si tð Þ;Φi tð Þð Þ

⏟
instantaneous payoff

þ:

γE max
si t þ 1ð Þ;…;

si Tð Þ∈U tð Þ

XT
τ¼tþ1

γτ−t−1Ump
i si τð Þ;Φi τð Þð Þsi tð Þ;Φi tð Þ

0
BB@

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
discounted future payoffs

ð8Þ

A key difference between the value function (8) and the utility (5) is
that in the second term in (8) one averages over trajectories with
utility-maximising choices for si(τ) for times at which the agent i gets
a chance of strategy revision. In other words, in (8) the particular
policy function is used.
3

The optimal strategy si∗(t) and the optimal value function Vi
∗(Φi(t),t)

for a far-sighted agent are therefore described as

s∗i tð Þ ¼ argmax
s0i

V i s
0
i

�
,Φi tð Þ, tÞ� �

, V ∗
i Φi tð Þ, tð Þ ¼ max

s0i
V i s

0
i

�
,Φi tð Þ, tÞ� �ð9Þ

It is important to stress that due to thepresence of strategic contribution
in (8) the optimal strategy found through (9) can be different from the
myopic greedy one defined by (3).

The optimal value function Vi
∗(Φi(t), t) satisfies the Bellman

optimality equation

V ∗
i Φi tð Þ, tð Þ ¼ max

si
Ump

i si tð Þ,Φi tð Þð Þþ�
γE V ∗

i Φi t þ 1ð Þð , t þ 1Þ si tð Þ,Φi tð Þj Þ� � ð10Þ

Inwhat followswe still use a special notation for the strategic contri-
bution to the value function in (8)

Qi si tð Þ;Φi tð Þ; tð Þ ¼

¼ E

0
BB@ max

si t þ 1ð Þ;…;
si Tð Þ∈U tð Þ

XT
τ¼tþ1

γτ−t−1Ump
i si τð Þ;Φi τð Þð Þjsi tð Þ;Φi tð Þ

!

¼ E V�
i Φi t þ 1ð Þ; t þ 1ð Þjsi tð Þ;Φi tð Þ� �

ð11Þ

Using the definition (11) the expression (8) can be written as

Vi si,Φi tð Þ, tð Þ ¼ Jm � i tð Þsi þ γQi si,Φi tð Þ, tð Þ þ εisi ð12Þ

As seen from eq. (11), calculation Qi(si(t),Φi(t), t) can proceed by
solving the Bellman eq. (10) for the expected value of the optimal
value function E V ∗

i Φi t þ 1ð Þð , t þ 1Þjsi tð Þ,Φi tð Þ� �
. It turns out that for

the considered case of the complete graph it is possible to construct its
exact numerical solution. The corresponding details are provided in
the Appendix A.

3. Results

With the elements of the game at place let us first analyse whether
strategic thinking pays off, i.e. whether it increases utility collected by
the players in the course of the game. Let us remind that at a given
time moment an agent can be

• passive, collecting the instantaneous utility (payoff)

Ump
i tð Þ ≡ Ump

i si t � 1ð Þ,m � i tð Þ, εsi t � 1ð Þ
� �

• active, collecting the instantaneous utility (payoff)

Ump
i tð Þ ≡ Ump

i si tð Þ,m � i tð Þ, εsi tð Þ
� �

The difference between the two cases is that an active agent collects
utility corresponding to the new choice that, in turn, includes strategic
considerations. The simplest characteristics of the process of utility gen-
eration is an averaged over an ensemble of system's simulated trajecto-
ries mean agents' payoff

〈U tð Þ〉 ¼ 1
N
∑
i
〈Ump

i tð Þ〉, ð13Þ

The resulting dependence is shown, for several values of γ and σ, in
Fig. 1. The details of the numeric simulations are provided in
Appendix B.

From the results shown in Fig. 1we see that including considerations
related to future payoffs into the decision contour leads to increase of
the average collected utility as compared to the myopic game when
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Fig. 1. Evolution of the averaged over an ensemble of system's simulated trajectoriesmean agents' payoffU(t). The solid lines show the position ofU(t), when averaging is performed over
100 simulations. Areas represent the size of the corresponding mean agents' payoff standard deviations.
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Fig. 2. Illustrative example of the myopic and strategic games of 6 players. Green colour denotes the+1 choice, red colour – the−1 one. The rectangles in the top show relative values of
the noise ε−1 and ε+1. The circled node represents a position of the current active player.
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noise is not too high. The magnitude of the effect increases with γ. The
upper-right panel of the figure corresponds to the point σ = 1.13 at
which the myopic phase transition takes place. From the presented
plot we see that for the myopic game (γ = 0) at this point U(t) starts
to fluctuate around zero. A notable property of the strategic game is in
the shift of transition point to the higher noise values. Moreover, the
higher is the value of γ, the later does this transition occur.

In what follows we present a detailed description of this phenome-
non. However, to clarify the idea, let us preface this discussion by con-
sidering an illustrative example. Let us consider the case of N = 6
players placed in the vertices of the N = 6 - nodes clique. In Fig. 2 we
compare two games: the myopic and strategic ones. Suppose, that we
analyse three time periods, for both games choose the same agents to
be active at every time point and that realisations of εs i are also the
same. In other words, we analyse two games with equivalent sources
of randomness. We also suppose that initially (at t = 0) agents 1, 5, 6
play +1 and agents 2, 3, 4, oppositely, play−1.

• At t = 1 the agent 1 is active. For him ε+ is significantly higher than
ε−. Therefore, in the myopic game he/she will choose s1(1) = + 1.
In the strategic game agent 1 accounts not only for the current
system's state and noise values, but also analyses what will happen
next. He/she understands, that if he/she will choose −1 the system
will be much closer to the consensus state −1 (four players against
two). Therefore, he/she understands that while currently losing a
part of the “noisy” utility he/she may receive much more from the
future consensus. So, the probability that he/she will choose −1 is
high. Assume, that he/she chooses s1(1) = − 1.

• At t = 2 the agent 5 is active. For him/her ε− is significantly higher
than ε+. We have the same incentives for the agent 5: it is better to
choose −1. However, in the strategic case mean agents payoff is
higher, as they now closer to the consensus, i.e. agent 1 was right to
choose−1 at t = 1.

• At t = 3 the agent 3 is active. For him/her ε+ is significantly higher
than ε−. The description of agent 3’s choice is absolutely the same as
the one of agent 1 at t = 1, however, the agent 3 appears to be in
better conditions, as the system is closer to the consensus state.

From this description it is clear, that strategic players have more
freedom in their decisions and, therefore, it is easier for them to find
the almost consensus state.

The preceding description of the evolution of a strategy set s(t) was
based on an explicit usage of (1) through explicit generation of ensem-
bles {ε±1} for each of the time steps t ∈ 1…T for each episode and
subsequent averaging over episodes. The result of this averaging can
be expressed through considering probabilities {ps i(m−i, t)} of
choosing, for an agent i, a strategy si for givenm−i at time t:

psi m−i; tð Þ ¼ Prob Vi si;Φi tð Þ; tð Þ > Vi −si;Φi tð Þ; tð Þ½ �
¼ Prob ε−si−εsi < 2Jm−isi þ γΔQi si;m−i; tð Þ� �
¼ F < 2Jm−isi þ γΔQi si;m−i; tð Þð Þ

ð14Þ

where

ΔQi si;m−i; tð Þ ¼ Qi si;m−i; tð Þ−Qi −si;m−i; tð Þ ð15Þ

and

F < xð Þ ¼ Prob ε−si−εsi < x
� � ð16Þ

Here by denotingQi(si,m−i, t)we assumeQi(si,Φi(t),t) for the casewhen
Ii tð Þ ¼ 1. In the myopic limit of γ = 0 we get
5

pmp
si m−ið Þ ¼ Prob Ump

i si;m−ið Þ > Ump
i −si;m−ið Þ� �

¼ Prob ε−si−εsi < 2Jm−isi
� � ð17Þ

For the probit noise N 0,σ ≡ 1=βð Þ considered in the paper

psi m−ið Þ ¼ 1
2

1þ erf βJm−isi þ
1
2
βγΔQi si;m−i; tð Þ

	 
� �
ð18Þ

The key difference between the choice probabilities (17) and (14) is
that the myopic probabilities (17) have no explicit time dependence
while those in (14) are, on the contrary, explicitly time-dependent
due to the time dependence of the strategic contribution ΔQi(si,m−i, t)
to the choice utility.

For the considered case of the Ising game on a complete graph the
probabilities in (14) are the same for all nodes. In addition, in the
large N limit

m−i tð Þ ¼ 1
N

XN
j¼1

s j tð Þ− s j
N
≃m tð Þ ¼ 1

N

XN
j¼1

s j tð Þ; ð19Þ

Thismeans that the index i in (14,17) can be omitted so that the process
of decision making can be described by one universal probability distri-
bution ps(m,t):

ps m; tð Þ ¼ F < 2Jmsþ γΔQ sjm; tð Þð Þ
¼ 1

2
1þ erf βJmsþ 1

2
βγΔQ s;m; tð Þ

	 
� � ð20Þ

In what follows we will concentrate on the analysis of

pþ m, tð Þ ≡ ps¼1 m, tð Þ ¼ 1
2

1þ erf βJmþ 1
2
βγΔQ 1,m, tð Þ

	 
� �
ð21Þ

A detailed description of the behaviour of the function ΔQ(1,m,t) is
presented in the Appendix C. In particular, a transparent interpretation
of the effects of strategic contribution is possible for discount parame-
ters γ < 0.85 (for σ ≥ 1). In this case the function ΔQ(1,m, t) is to a
very high accuracy linear in m:

ΔQ 1,m, tð Þ ¼ c tð Þm, ð22Þ

with c(t) > 0 staying practically constant almost up to t= T and rapidly
falling to c(T) = 0 at the very end. In fact, c tð Þ ≡ c t,γ,σ ≡ 1

β

� �
, but we

omit γ and σ to simplify the notations. Then from eqs. (21,22) we get
for p+(m, t)

pþ m; tð Þ ≈ F < 2 J þ γc tð Þð ÞmÞ½ � ð23Þ

For the considered case of probit noise the expression (23) takes the
form

pþ m, tð Þ ≡ ps¼1 m, tð Þ ¼ 1
2

1þ erf β J þ γ
c tð Þ
2

� �
m

	 
� �
ð24Þ

In the myopic limit the game dynamics is controlled by the product
βJ quantifying the balance of the strength of rigidity represented by the
interaction scale J and noise represented by β= 1/σ. From eq. (24) we
see that taking into account strategic contribution to utility leads to the
following modification:

βJð Þeff ¼ βJ 1þ γ
c tð Þ
2J

� �
ð25Þ



1

2

3

4

5

0 250 500 750 1000
t

��
J�
ef
f

�

0.8

0.5

0.2

�J � �1

Fig. 4. Temporal evolution of (βJ)eff(t) in different time points t and for different parameter
γ.
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As at all t< T the coefficient c(t) is positive, thenewbalance between
interaction and noise is shifted to (βJ)eff > βJ. This effect of far-
sightedness can therefore alternatively be interpreted as

• Strategic stiffening, i.e. an increase of interaction strength J

J → J 1þ γc tð Þ
2 J

� �
; ð26Þ

• Strategic cooling, i.e. a reduction of noise

β → β 1þ γc tð Þ
2 J

� �
ð27Þ

or some combinations thereof corresponding to some particular multi-
plicative partitions of the second factor in the right hand side of (26, 27).

The above-presented arguments are supported by results of compu-
tation of p+(m,t) based on the exact numerical solution of the Bellman
equation described in the Appendix A shown, for different times, in
Fig. 3. We see, that at the final time point t = T the function p+(m,T)
is purely myopic so that is behaviour is determined by the myopic
scale βJ. On the contrary, starting from the initial moment t = 1 the
function p+(m, t) is markedly different from its myopic limit showing
significant noise reduction.

A direct illustration of the phenomenon of strategic stiffening/
cooling is probided by studying the temporal evolution of the scale
(βJ)eff(t) which is generically defined by

pþ m, tð Þ ¼ 1
2

1þ erf βJð Þeff tð Þm� �� � ð28Þ

The time dependence of (βJ)eff(t) is shown in Fig. 4. in which one
directly observes noise reduction due to strategic contribution to
decision-making and, in particular, its dependence on the discount pa-
rameter γ, cf. Eq. (25).

In the considered case of the complete graph topology the dynamics of
the Ising game is completely characterised by the evolution ofm(t). Let us
describe this evolution in terms of a population game with time-
dependent rates computed from the time-dependent probabilities
p+(m, t) taking into account strategic effects in decision making. The
state of this population game is, at each t, fully described by the number
of agents N±(t) equippedwith the strategies s=±1 respectively so that

m tð Þ ¼ Nþ tð Þ � N � tð Þ
N

ð29Þ
1

Fig. 3. Temporal evolution of the probability p+(m,t).

6

The evolution is then fully defined by the state- and time-dependent
transition rates λ±(N±| t) describing probabilities of a strategy flip
s → − s of a randomly chosen agent

λ� N�jtð Þ ¼ Prob M t þ 1ð Þ ¼ M tð Þ � 2½ � ð30Þ

where M = N+ − N−. We have

λ� N�jtð Þ ¼ N∓ tð Þ
N

p� m tð Þ, tð Þ ¼ 1∓m tð Þ
2

p� m, tð Þ ð31Þ

The evolution of an average aggregate choice is then described by
the following equation

m t þ 1ð Þ−m tð Þjm tð Þh i ¼ 2
N
λþ þ −

2
N

� �
λ− ¼

¼ 1
N

2pþ m tð Þ; tð Þ−1
� �

−m tð Þ� � ð32Þ

where we have used the fact that p+(m, t) + p−(m, t) = 1 and the
notation 〈⋅|m(t)〉 means expectation value conditional on m(t). To
describe the evolution of 〈m(t)〉 one needs the expression not for the
conditional expectation of the Δm(t) = m(t + 1) − m(t) value, but
for the unconditional one 〈Δm(t)〉. This estimate can be obtain by
application of the expectation operation to the both right- and left-
hand sides of Eq. (32), i.e.

〈m t þ 1ð Þ � m tð Þ〉 ¼ 1
N
〈 2pþ m tð Þð , tÞ � 1
� � � m tð Þ� �

〉:

As very rough approximation we can put expectation operator inside
the right-hand side function operator:

〈m t þ 1ð Þ � m tð Þ〉≈ 1
N

2pþ 〈m tð Þ〉�
, tÞ � 1

� � � 〈m tð Þ〉� �
: ð33Þ

This approximation is assumed to be close to the exact solution for the
low noise phase and close to equilibrium states. Using Eq.(33) we can
write the expression for the evolution of the 〈m(t)〉 as follows

〈m t þ 1ð Þ〉≈〈m tð Þ〉þ 1
N

2pþ 〈m tð Þ〉�
, tÞ � 1

� � � 〈m tð Þ〉� � ð34Þ

In Fig. 5we compare evolution of simulatedm(t)with that described
by Eq. (34). We see that a very good agreement between the two is ob-
served.

Image of Fig. 3
Image of Fig. 4
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Characteristic regimes of the evolution of the configuration s(t) and,
in particular, of its aggregated characteristic m(t) described by Eq. (32)
are significantly determined by the relative strength of conformity and
noise effects parametrised by the constants J and β = 1/σ respectively.
These regimes can be classified by recalling that a static myopic Ising
game is characterised by a phase transition between ordered and disor-
dered phases with m ≠ 0 at (βJ) > (βJ)critmp and m = 0 at (βJ) < (βJ)critmp

correspondingly [2,4] where for the considered case of probit noise
one has [10].

βJð Þmp
crit ¼

ffiffiffi
π

p
2

ð35Þ

or, equivalently,

σmp
crit ¼

2Jffiffiffi
π

p : ð36Þ

Assuming for definiteness that strategic effects manifest themselves
in the form of strategic cooling we see from (27) that the perceived ef-
fective level of noise σeff(t) is related to the bare one σ by

σeff tð Þ ¼ σ
2J

2J þ γc tð Þ
� �

ð37Þ
M
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Fig. 5. Evolution of the 〈m(t)〉 in the numerical simulations and obtained u
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so, as long as σeff(t) < σcrit
mp, i.e.

σ < σmp
crit 1þ γc tð Þ

2J

� �
ð38Þ

the systemwill find itself in the low-noise phase. Of special interest here
is of course the time-dependent interval

σmp
crit < σ < σmp

crit 1þ γc tð Þ
2J

� �
ð39Þ

in which the effective reduction of noise pushes the system into the
low-noise phase for the values of bare noise strengthσ atwhich themy-
opic phase is the high-noise one. A detailed illustration of this phenom-
enon is given in Appendix B.2.

4. Conclusion and outlook

Let us formulate once again themain results obtained in the present
paper.

• The noisy dynamic binary choice game (Ising game) of forward-
looking agents on complete graph was analysed.

• It was shown that strategic considerations lead to enhancement of av-
erage local utility as compared to the myopic game.

• A phenomenon of strategic stiffening/cooling of interaction enhance-
ment/noise reduction due to farsighted strategy formation was de-
scribed.
ime, t

ulations estimate

sing Eq. (34) for the myopic case (γ = 0) and for the case of γ = 0.8.

Image of Fig. 5
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• A modified population dynamics with time-dependent choice proba-
bilities was formulated.

• The effect of strategic stiffening/cooling can have important conse-
quences for describing the collective dynamics effects in the Ising
type models of opinion formation.

The two important problem for the next phase of analysis we see
are:

• Studying effects of agent's farsightedness in the Ising game on graphs
with nontrivial topologies. In this case exact solution of the corre-
sponding Bellman equation will no longer be possible so one will
have to turn to finding its approximate solution.

• Studying reinforcement learning in the Ising game in the spirit of [27].
1
..
1
1
..
1

..
1
1
..
1
0
..
0
0
..
0
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Appendix A. Solution of Bellman equation
To account for strategic component in the utility function one needs to calculate values Qi(±1,Φi(t), t) for every possible value of m−i(t) and t ∈
[1,…,T], or the table Q (see Table B.2 in the appendix Appendix B). As it follows from (11) to do these calculations one needs to obtain values of
the optimal value function Vi

∗(Φi(t + 1), t + 1|si(t),Φi(t)) for every possible tuple Φi(t + 1) and t values. Common method of computation of the
optimal value function for the problems with finite time horizon is backward induction. In this approach computation of the value function values
begins from the final time point.
In the considered game tuple Φi(t + 1) contains realisations of random contributions ε+1

i and ε−1
i . Therefore, in general one should treat optimal

value function Vi
∗(⋅) as having continuous arguments. However, to obtain Qi(±1,Φi(t), t) one needs only expected value of the Vi

∗(Φi(t + 1), t +
1| si(t),Φi(t)). Thus, there are two important notes about random contributions assessment. First, agent's decision is driven not by the values
ε+1
i and ε−1

i itself, but by the following comparison:

Jm−i tð Þ þ γQi þ1;Φi tð Þ; tð Þ þ εiþ1vs:−Jm−i tð Þ þ γQi −1;Φi tð Þ; tð Þ þ εi−1

Second, as random contributions are additive and have zero mean they cancel out when values of Vi∗(⋅) are calculated. Therefore, to assess Qi(±1,
Φi(t),t) instead of the pair ε+1

i , ε−1
i one needs to know only realization of the random value Iþi which is defined as follows:

Iþi tð Þ ¼ I

	
Jm−i tð Þ þ γQi þ1;Φi tð Þ; tð Þ þ εiþ1≥−Jm−i tð Þ þ γQi −1;Φi tð Þ; tð Þ þ εi−1



ðA:1Þ

Let Φ
~

tð Þ be the following tuple

Φ
~

tð Þ ¼ Ii tð Þ, si t � 1ð Þ,m � i tð Þ, Iþi tð Þ� �
:

Then the Bellman table V
~
with elements V

~

i
Φ
~

tð Þ, t
� �

has structure defined in Table A.1. To enable the backward induction, it should be noted that

Qi �1,Φi Tð Þ, Tð Þ ¼ 0:

The exact way of calculation of the Qi(±1,Φi(t), t) values used in the definition of V
~

i
Φ
~

tð Þ, t
� �

is described below. The backward induction is also
illustrated in Fig. A.6.
Table A.1

Structure of the table V
~
.

V
~
¼

Φ
~

tð Þ
 Time t
Ii tð Þ
 m−i(t)
 si(t − 1)
 Iþi tð Þ
 1
 2
 ...
 T − 1
 T
−(N − 1)/N
 1
 1
Jm−i(t) + γQi(+1,Φi(t), t)
.
 ...
 ...
 ...

(N − 1)/N
 1
 1

−(N − 1)/N
 −1
 1
.
 ...
 ...
 ...

(N − 1)/N
 −1
 1

−(N − 1)/N
 1
 0
−Jm−i(t) + γQi(−1,Φi(t), t)
.
 ...
 ...
 ...

(N − 1)/N
 1
 0

−(N − 1)/N
 −1
 0
.
 ...
 ...
 ...

(N − 1)/N
 −1
 0

−(N − 1)/N
 1
 1
Jm � i tð Þsi t � 1ð Þþ
γQi si t � 1ð Þ, ;Φi tð Þ, ;tð Þ
.
 ...
 ...
 ...

N − 1
 1
 1

−(N − 1)
 −1
 1
.
 ...
 ...
 ...

N − 1
 −1
 1
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Table A.1 (continued)

V
~
¼

Φ
~

tð Þ
0
..
0
0
..

Fig. A.6. Illustration of the backward induction procedure used for the expected value E V
~

i
Φ
~

i
tð

��

Qi si tð Þ;Φi tð Þ; tð Þ ¼ E V�
i ðΦi t þ 1ð Þ; t þ 1Þ; si tð Þ;Φi tð Þ� � ¼ E ~Við ~Φi t þ 1ð Þ; t þ 1Þ; si tð Þ; ~Φið

�

P Ii t þ 1ð Þ ¼ 0ð ÞP I j t þ 1ð Þ ¼ 1; j≠i; s j tð Þ ¼ −1
� �� E−i=− t þ 1; si tð Þ;m−ið|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl

if some other player0sstep
is next and this player
has−1strategyattime t

9

Time t
Ii tð Þ
 m−i(t)
 si(t − 1)
 Iþi tð Þ
 1
þ 1Þ, t þ 1Þjsi tð Þ,Φ
~

i
ð

tÞ
�
¼ P Ii t þ 1ð Þ ¼ð

tð ÞÞfflfflfflfflfflffl} ;
2

tÞ
�
calculation.

1Þ Ei t þ 1; si tð Þ;m−ð|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl
if i0s step is next
...
i tð ÞÞfflfflfflfflfflfflfflfflffl} þ E−i=þ t þ 1;ð|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
if some othe
is next and
hasþ 1stra
T − 1
si tð Þ;m−i tð ÞÞzfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
r player0sstep
this player

tegyattime t

þ

T

−(N − 1)
 1
 0

.
 ...
 ...
 ...
N − 1
 1
 0

−(N − 1)
 −1
 0
.
 ...
 ...
 ...

N − 1
 −1
 0
0

Image of Fig. A.6
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where

P Ii t þ 1ð Þ ¼ 1ð Þ ¼ 1
N
; P Ii t þ 1ð Þ ¼ 0ð Þ ¼ 1−

1
N
; P I j t þ 1ð Þ ¼ 1j j≠i; s j tð Þ ¼ þ1

� � ¼ 1
2

1þm−i tð Þ
N−1

� �
P I j t þ 1ð Þ ¼ 1j j≠i; s j tð Þ ¼ −1
� � ¼ 1

2
1−

m−i tð Þ
N−1

� �

Ei(⋅), E−i/+(⋅) (E−i/−(⋅)) are player i’s expected payoffs respectively in the cases when his step or his neighbour playing +1 (−1) step is next.
Calculation of these values is described below.

Ei t þ 1jsi tð Þ;m−i tð Þð Þ ¼ E ~Viðð1;m−i tð Þ; si tð Þ;1Þ; t þ 1Þ þ εiþ
� �

Iþi t þ 1ð Þþ
h

~Viðð1;m−i tð Þ; si tð Þ;0Þ; t þ 1Þ þ εi−
� �

1−Iþi t þ 1ð Þ� �i
¼ piþ t þ 1ð Þ~Vi 1;m−i tð Þ; si tð Þ;1ð Þ; t þ 1ð Þ þ 1−piþ t þ 1ð Þ

� �
~Vi 1;m−i tð Þ; si tð Þ;0ð Þ; t þ 1ð Þ þ E εiþ−εi−

� �
Iþi t þ 1ð Þ

h i
;

ðA:2Þ

E−i=þ t þ 1jsi tð Þ;m−i tð Þð Þ ¼ pj
þ t þ 1ð Þ~Vi 0;m−i tð Þ; si tð Þ;1ð Þ; t þ 1ð Þ þ 1−pj

þ t þ 1ð Þ
� �

~Vi 0;m−i tð Þ−2; si tð Þ;1ð Þ; t þ 1ð Þ; ðA:3Þ

E−i=− t þ 1jsi tð Þ;m−i tð Þð Þ ¼ pj
þ t þ 1ð Þ~Vi 0;m−i tð Þ þ 2; si tð Þ;1ð Þ; t þ 1ð Þ þ 1−pj

þ t þ 1ð Þ
� �

~Vi 0;m−i tð Þ; si tð Þ;1ð Þ; t þ 1ð Þ; ðA:4Þ

where p+
i (t + 1) is the probability of the event that player i chooses +1 (the same object as defined in (14)):

piþ t þ 1ð Þ ¼ Prob εi−−εiþ < ~Viðð1;m−i tð Þ; si tð Þ;1Þ; t þ 1Þ−~Viðð1;m−i tð Þ; si tð Þ;0Þ
h i

¼ Prob εi−−εiþ < 2Jm−i þ ΔQiðþ1;Φi tð Þ; t þ 1Þ
h i

:

p+
j (t + 1) in (A.3) and (A.4) has the similar definition. However, note that m−j(t) = m−i(t) + si(t) − sj(t).

Appendix B. Numerical simulations

B.1. Methodology and algorithm

The procedure of the numerical simulations can be divided into two stages: the preliminary and game one. On the first (preliminary) stage the pa-
rameters N, T, γ, J and σ are initialized and the tableQ containing valuesQi(si(t),Φi(t),t) (see expression (11)) is calculated (see Table B.2). This table
can be obtained directly from the Bellman tablewhich is calculated in theAppendix Appendix A. Aswe study themodel on the complete graph all the
agents are absolutely the same, therefore, all agents actions are driven by the same Q table.

Table B.2
Structure of the table Q.
Q

m−i(t)
 si(t)
 Time t
1

10
2
 ...
 T − 1
 T
=

−(N − 1)/N
 1
Qi(si(t),Φi(t), t)
−(N − 3)/N
 1

...
 ...

(N − 3)/N
 1

(N − 1)/N
 1

−(N − 1)/N
 −1

−(N − 3)/N
 −1

...
 ...

(N − 3)/N
 −1

(N − 1)/N
 -1
The game stage proceeds as follows. At each time step t one randomly chosen agent i gets a chance of a strategy revision si(t− 1)→ si(t) through a
mechanism described in the section 2. As a result, the previous configuration s(t− 1) is updated so that s(t) = (…,si−1(t− 1),si(t),si+1(t− 1)…).
This updated configuration is then used to calculate agent's instant payoffs {Ui

mp(si(t),Φi(t)), i=1,…,N}. This calculationfinalizes the time t iteration
and the loop continues for the t + 1 stage.
The formal representation of the simulation procedure is presented in Algorithm 1.
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Algorithm 1. Numerical simulations algorithm.
B.2. Examples of system evolution

In this Appendixwe provide a detailed illustration of the influence of stochastic cooling on the evolution of the system. As described in themain text,
the most dramatic effect we expect to observe is related to the fact that due to this strategic reduction of noise there exists an interval of bare noise
strength σ, see Eq. (3), in which the system is pushed into a low-noise phasewithm ≠ 0 at values of σ for which in the absence of strategic effects the
system would find itself in the high-noise one with m = 0.
To illustrate the effects of the strategic cooling in Fig. B.7 we compare sample evolution patterns of strategy configuration s(t) = (s1(t),…,sN(t)) for
myopic (γ=0, upper row) and strongly farsighted (γ=0.99, lower row) for various levels of bare noise σ. The initial configurations s(0) are in all
cases such thatm(0)=0. In Fig. B.7we plot the values {si(t)} for i=1,…N (vertical axis) for t=0,…, T (horizontal axis)withN=100 and T=1000.
The empty squares correspond to the values {si(t) = 1} and the filled ones to the values {si(t) = − 1}. it is insightful to compare the sample
configuration histories for σ = 1.13 which for the probit noise and with the assumed value J = 1 corresponds to the myopic phase transition
point. Comparison of these histories shows that farsighted agents are able to find consensus while myopic ones cannot. At larger bare noise
strength σ = 5 the picture is the same. At very high bare noise level σ = 50 strategic effects can no longer prevent strategy configuration from
randomisation.
The same conclusion can be made from plotting the evolution of m(t) in Fig. B.8.
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Fig. B.8. Evolution of the agents mean choice in the case of myopic (γ = 0) and farsighted (γ = 0.99) games with different bare noise levels. For each pair of γ and σ the results of 20
simulations are shown.

Fig. B.7. Illustration of evolution of configuration s(t)= (s1(t),…,sN(t)) formyopic (γ=0, upper row) and farsighted (γ=0.99, lower row) players for different bare noise levelsσwithin
the time interval t = 0,…, T with N = 100 and T = 1000. The empty/filled squares correspond to the values {si(t) = 1} and {si(t) = − 1} respectively.
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Appendix C. The function ΔQ(t,1,m(t))
In this Appendix we provide details on the behaviour of the function ΔQ(t,1,m), see (21). In Fig. C.9 we plot ΔQ(t,1,m) at t equal to 1 and 950 and
several values of σ = 1/β and γ.
Fig. C.9. The function ΔQ(t,1,m) for several σ and γ at t = 1 and t = 950.
From Fig. C.9 and the analysis provided in the Appendix Appendix Awe can conclude that the pattern characterisingΔQ(t,+1,m) can be described as
follows:

ΔQ t,þ1,mð Þ≈d t,γ,σð Þmþ f t,γ,σð Þerf g t,γ,σð Þmð Þ, ðC:1Þ
where d(⋅), f(⋅) and g(⋅) are constant for each triple t, γ and σ. However, from Fig. C.9 it is also clear that for each σ starting from some value of γ the
shape of the ΔQ(t,+1,m) function is very close to the linear one:

ΔQ t,þ1,mð Þ≈c t,γ,σð Þm, ðC:2Þ
with constant c(⋅) for each triple t, γ and σ. In particular, in Fig. C.9 we see that for σ= 20 the dependence is linear for γ ≤ 0.9, while for σ= 1 the
same is true for γ ≤ 0.8.

Let us introduce notations for the following two approximations of the ΔQ(t,+1,m) function:

ΔQnl t,þ1,mð Þ ¼ d t,γ,σð Þmþ f t,γ,σð Þerf g t,γ,σð Þmð Þ,
ΔQ l t,þ1,mð Þ ¼ c t,γ,σð Þm,

where d(⋅), f(⋅), g(⋅) and c(⋅) are values providing the best fits of the calculated ΔQ(t,+1,m) function for each (t,γ,σ).
Several ways to quantitatively define the difference betweenΔQnl(t,+1,m) andΔQl(t,+1,m) can be introduced.Wewill usemean absolute percent-
age error (MAPE), as it is very natural measure frequently used in statistics to measure forecast accuracy. In particular, let us note δ(t,γ,σ) the MAPE
between ΔQnl(t,+1,m) and ΔQl(t,+1,m):

δ t,γ,σð Þ ¼ 1
N

∑
N
2½ �

k¼ � N
2½ �
∣ΔQnl t,þ1, 2k

N

� � � ΔQ l t,þ1, 2kN
� �

∣

∣ΔQnl t,þ1, 2kN
� �

∣
ðC:3Þ

In Fig. C.10 the dependence of δ(⋅) from γ at t = 1 for σ = 1 and σ = 20 is presented. From this figure it follows that for γ not too close to γ = 1
(roughly for γ < 0.85) the linear fit can be used even for the small σ values.
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Fig. C.10. The function δ(t,γ,σ) for several σ at t = 1. The dotted horizontal line shows the position of δ = 0.1 – the 10 % MAPE.

The time-dependence of ΔQ(t,+1,m) in case of linear approximation is determined by that of the function c(t,γ,σ). The latter is plotted for γ=0.8
and several values of σ in the panel A of Fig. C.11. From this figure we see that c(t,γ,σ) is positive and stays constant for a parametrically large time
and rapidly decays to zero at times close to T. Ofmain interest is, of course, the dominant stationary regimewhile the decay towards themyopic limit
is a boundary effect. In developing a probabilistic description of the effects of far-sightedness wewill concentrate on considering the linear regime of
(C.2).
The properties of the stationary values of c(t,γ,σ) are further specified in the panel B of Fig. C.11. Herewe see that the coefficient c(1,γ,σ) is a growing
function of the discounting coefficientγ. Another characteristic feature seen in Fig. C.11 is that the coefficient c(t,γ,σ) is only slightly dependent of the
noise scaleσ. From the previous note on the dynamics of c(t,γ,σ) it is clear, that the dependence from γ andσ remains practically unchanged besides
the end of the time period.
Fig. C.11. Properties of the c(t,γ,σ) function. Panel A: the time-dependence of c(⋅) for γ = 0.8 and several σ values. Panel B: the dependence of c(⋅) from γ at t = 1 for several σ.
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